125 research outputs found

    Generalized Assignment via Submodular Optimization with Reserved Capacity

    Get PDF
    We study a variant of the generalized assignment problem (GAP) with group constraints. An instance of (Group GAP) is a set I of items, partitioned into L groups, and a set of m uniform (unit-sized) bins. Each item i in I has a size s_i >0, and a profit p_{i,j} >= 0 if packed in bin j. A group of items is satisfied if all of its items are packed. The goal is to find a feasible packing of a subset of the items in the bins such that the total profit from satisfied groups is maximized. We point to central applications of Group GAP in Video-on-Demand services, mobile Device-to-Device network caching and base station cooperation in 5G networks. Our main result is a 1/6-approximation algorithm for Group GAP instances where the total size of each group is at most m/2. At the heart of our algorithm lies an interesting derivation of a submodular function from the classic LP formulation of GAP, which facilitates the construction of a high profit solution utilizing at most half the total bin capacity, while the other half is reserved for later use. In particular, we give an algorithm for submodular maximization subject to a knapsack constraint, which finds a solution of profit at least 1/3 of the optimum, using at most half the knapsack capacity, under mild restrictions on element sizes. Our novel approach of submodular optimization subject to a knapsack with reserved capacity constraint may find applications in solving other group assignment problems

    The Preemptive Resource Allocation Problem

    Get PDF
    We revisit a classical scheduling model to incorporate modern trends in data center networks and cloud services. Addressing some key challenges in the allocation of shared resources to user requests (jobs) in such settings, we consider the following variants of the classic resource allocation problem (RAP). The input to our problems is a set J of jobs and a set M of homogeneous hosts, each has an available amount of some resource. A job is associated with a release time, a due date, a weight and a given length, as well as its resource requirement. A feasible schedule is an allocation of the resource to a subset of the jobs, satisfying the job release times/due dates as well as the resource constraints. A crucial distinction between classic RAP and our problems is that we allow preemption and migration of jobs, motivated by virtualization techniques. We consider two natural objectives: throughput maximization (MaxT), which seeks a maximum weight subset of the jobs that can be feasibly scheduled on the hosts in M, and resource minimization (MinR), that is finding the minimum number of (homogeneous) hosts needed to feasibly schedule all jobs. Both problems are known to be NP-hard. We first present an Omega(1)-approximation algorithm for MaxT instances where time-windows form a laminar family of intervals. We then extend the algorithm to handle instances with arbitrary time-windows, assuming there is sufficient slack for each job to be completed. For MinR we study a more general setting with d resources and derive an O(log d)-approximation for any fixed d >= 1, under the assumption that time-windows are not too small. This assumption can be removed leading to a slightly worse ratio of O(log d log^* T), where T is the maximum due date of any job

    Modular and Submodular Optimization with Multiple Knapsack Constraints via Fractional Grouping

    Get PDF
    A multiple knapsack constraint over a set of items is defined by a set of bins of arbitrary capacities, and a weight for each of the items. An assignment for the constraint is an allocation of subsets of items to the bins which adheres to bin capacities. In this paper we present a unified algorithm that yields efficient approximations for a wide class of submodular and modular optimization problems involving multiple knapsack constraints. One notable example is a polynomial time approximation scheme for Multiple-Choice Multiple Knapsack, improving upon the best known ratio of 2. Another example is Non-monotone Submodular Multiple Knapsack, for which we obtain a (0.385-?)-approximation, matching the best known ratio for a single knapsack constraint. The robustness of our algorithm is achieved by applying a novel fractional variant of the classical linear grouping technique, which is of independent interest
    • …
    corecore